Mysql数据库大表优化方案和Mysql大表优化步骤(2)

2019-03-07 14:41:49 来源:互联网作者:佚名 人气: 次阅读 918 条评论

当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化。单表优化  除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部...

表分区

MySQL在5.1版引入的分区是一种简单的水平拆分,用户需要在建表的时候加上分区参数,对应用是透明的无需修改代码

对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成,实现分区的代码实际上是通过对一组底层表的对象封装,但对SQL层来说是一个完全封装底层的黑盒子。MySQL实现分区的方式也意味着索引也是按照分区的子表定义,没有全局索引。

640?wx_fmt=png

用户的SQL语句是需要针对分区表做优化,SQL条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,可以通过 EXPLAIN PARTITIONS来查看某条SQL语句会落在那些分区上,从而进行SQL优化,如下图5条记录落在两个分区上:

  1. mysql> explain partitions select count(1) from user_partition where id in (1,2,3,4,5);
  2. +----+-------------+----------------+------------+-------+---------------+---------+---------+------+------+--------------------------+
  3. | id | select_type | table          | partitions | type  | possible_keys | key     | key_len | ref  | rows | Extra                    |
  4. +----+-------------+----------------+------------+-------+---------------+---------+---------+------+------+--------------------------+
  5. |  1 | SIMPLE      | user_partition | p1,p4      | range | PRIMARY       | PRIMARY | 8       | NULL |    5 | Using where; Using index |
  6. +----+-------------+----------------+------------+-------+---------------+---------+---------+------+------+--------------------------+
  7. 1 row in set (0.00 sec)

分区的好处是:

  • 可以让单表存储更多的数据

  • 分区表的数据更容易维护,可以通过清楚整个分区批量删除大量数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作

  • 部分查询能够从查询条件确定只落在少数分区上,速度会很快

  • 分区表的数据还可以分布在不同的物理设备上,从而搞笑利用多个硬件设备

  • 可以使用分区表赖避免某些特殊瓶颈,例如InnoDB单个索引的互斥访问、ext3文件系统的inode锁竞争

  • 可以备份和恢复单个分区

分区的限制和缺点:

  • 一个表最多只能有1024个分区

  • 如果分区字段中有主键或者唯一索引的列,那么所有主键列和唯一索引列都必须包含进来

  • 分区表无法使用外键约束

  • NULL值会使分区过滤无效

  • 所有分区必须使用相同的存储引擎

分区的类型:

  • RANGE分区:基于属于一个给定连续区间的列值,把多行分配给分区

  • LIST分区:类似于按RANGE分区,区别在于LIST分区是基于列值匹配一个离散值集合中的某个值来进行选择

  • HASH分区:基于用户定义的表达式的返回值来进行选择的分区,该表达式使用将要插入到表中的这些行的列值进行计算。这个函数可以包含MySQL中有效的、产生非负整数值的任何表达式

  • KEY分区:类似于按HASH分区,区别在于KEY分区只支持计算一列或多列,且MySQL服务器提供其自身的哈希函数。必须有一列或多列包含整数值

分区适合的场景有:

最适合的场景数据的时间序列性比较强,则可以按时间来分区,如下所示:

  1. CREATE TABLE members (
  2.    firstname VARCHAR(25) NOT NULL,
  3.    lastname VARCHAR(25) NOT NULL,/li>
  4.    username VARCHAR(16) NOT NULL,
  5.    email VARCHAR(35),
  6.    joined DATE NOT NULL
  7. )
  8. PARTITION BY RANGE( YEAR(joined) ) (
  9.    PARTITION p0 VALUES LESS THAN (1960),
  10.    PARTITION p1 VALUES LESS THAN (1970),
  11.    PARTITION p2 VALUES LESS THAN (1980),
  12.    PARTITION p3 VALUES LESS THAN (1990),
  13.    PARTITION p4 VALUES LESS THAN MAXVALUE
  14. );

查询时加上时间范围条件效率会非常高,同时对于不需要的历史数据能很容的批量删除。

如果数据有明显的热点,而且除了这部分数据,其他数据很少被访问到,那么可以将热点数据单独放在一个分区,让这个分区的数据能够有机会都缓存在内存中,查询时只访问一个很小的分区表,能够有效使用索引和缓存

另外MySQL有一种早期的简单的分区实现 - 合并表(merge table),限制较多且缺乏优化,不建议使用,应该用新的分区机制来替代

垂直拆分

垂直分库是根据数据库里面的数据表的相关性进行拆分,比如:一个数据库里面既存在用户数据,又存在订单数据,那么垂直拆分可以把用户数据放到用户库、把订单数据放到订单库。垂直分表是对数据表进行垂直拆分的一种方式,常见的是把一个多字段的大表按常用字段和非常用字段进行拆分,每个表里面的数据记录数一般情况下是相同的,只是字段不一样,使用主键关联

比如原始的用户表是:

20190307150113.jpg

垂直拆分后是:

20190307150158.jpg

垂直拆分的优点是:

  • 可以使得行数据变小,一个数据块(Block)就能存放更多的数据,在查询时就会减少I/O次数(每次查询时读取的Block 就少)

  • 可以达到最大化利用Cache的目的,具体在垂直拆分的时候可以将不常变的字段放一起,将经常改变的放一起

  • 数据维护简单

缺点是:

  • 主键出现冗余,需要管理冗余列

  • 会引起表连接JOIN操作(增加CPU开销)可以通过在业务服务器上进行join来减少数据库压力

  • 依然存在单表数据量过大的问题(需要水平拆分)

  • 事务处理复杂

水平拆分

概述

水平拆分是通过某种策略将数据分片来存储,分库内分表和分库两部分,每片数据会分散到不同的MySQL表或库,达到分布式的效果,能够支持非常大的数据量。前面的表分区本质上也是一种特殊的库内分表

库内分表,仅仅是单纯的解决了单一表数据过大的问题,由于没有把表的数据分布到不同的机器上,因此对于减轻MySQL服务器的压力来说,并没有太大的作用,大家还是竞争同一个物理机上的IO、CPU、网络,这个就要通过分库来解决

前面垂直拆分的用户表如果进行水平拆分,结果是:

20190307150227.jpg

实际情况中往往会是垂直拆分和水平拆分的结合,即将 Users_A_M和 Users_N_Z再拆成 Users和 UserExtras,这样一共四张表

水平拆分的优点是:

  • 不存在单库大数据和高并发的性能瓶颈

  • 应用端改造较少

  • 提高了系统的稳定性和负载能力

缺点是:

  • 分片事务一致性难以解决

  • 跨节点Join性能差,逻辑复杂

  • 数据多次扩展难度跟维护量极大

分片原则

  • 能不分就不分,参考单表优化

  • 分片数量尽量少,分片尽量均匀分布在多个数据结点上,因为一个查询SQL跨分片越多,则总体性能越差,虽然要好于所有数据在一个分片的结果,只在必要的时候进行扩容,增加分片数量

  • 分片规则需要慎重选择做好提前规划,分片规则的选择,需要考虑数据的增长模式,数据的访问模式,分片关联性问题,以及分片扩容问题,最近的分片策略为范围分片,枚举分片,一致性Hash分片,这几种分片都有利于扩容

  • 尽量不要在一个事务中的SQL跨越多个分片,分布式事务一直是个不好处理的问题

  • 查询条件尽量优化,尽量避免Select * 的方式,大量数据结果集下,会消耗大量带宽和CPU资源,查询尽量避免返回大量结果集,并且尽量为频繁使用的查询语句建立索引。

  • 通过数据冗余和表分区赖降低跨库Join的可能

这里特别强调一下分片规则的选择问题,如果某个表的数据有明显的时间特征,比如订单、交易记录等,则他们通常比较合适用时间范围分片,因为具有时效性的数据,我们往往关注其近期的数据,查询条件中往往带有时间字段进行过滤,比较好的方案是,当前活跃的数据,采用跨度比较短的时间段进行分片,而历史性的数据,则采用比较长的跨度存储。

总体上来说,分片的选择是取决于最频繁的查询SQL的条件,因为不带任何Where语句的查询SQL,会遍历所有的分片,性能相对最差,因此这种SQL越多,对系统的影响越大,所以我们要尽量避免这种SQL的产生。

您可能感兴趣的文章

相关文章