当朋友圈更新多到看不完时 Facebook是怎么优化信息流的

2015-12-09 08:50:00 来源:雷锋网 作者:佚名 人气: 次阅读 560 条评论

本文是FREES互联网团队成员覃超与徐万鸿进行的一场AskMeAnything。徐是前Facebook新闻流排序组的资深工程师,在今年9月回国出任神州专车CTO。本文中他们聊的是关于F...

【编者按】本文是FREES互联网团队成员覃超与徐万鸿进行的一场 Ask Me Anything。徐是前Facebook 新闻流排序组的资深工程师,在今年9月回国出任神州专车 CTO。本文中他们聊的是关于 Facebook 的 Growth Hacking 策略、反垃圾信息系统、信息流排序,以及为什么选择回国参与创业。

当朋友圈更新多到看不完时,来看看Facebook是怎么优化信息流的

所谓新闻流排序(news feed ranking),指的是 Facebook 的一项看家本领:用户每天会收到两三千条新鲜事,却只会阅读前 50 至 100 条。利用机器学习将用户最想看的内容排到最前面,从而提高粘性和日活。

这固然是一篇着重技术的文章,所在公司 Facebook 更是世界上最大的互联网公司之一。但这并不妨碍创业者从中得到经验。利用 A/B 测试作为迭代方法,借助 Growth Hacking 的核心——数据来驱动开发,新员工的入职宣讲……这些做法都体现了这位社交之王不同维度的文化所在:精神层面注重实现梦想,统一目标;而这一目标下放到微观层面,就是对于数据的尊重。

Facebook利用Sigma 系统做了什么?

我第一次去Facebook工作的时候,当时专注于用户增长的 VP 负责宣讲。他说将来全球所有人都会使用 Facebook,这家公司将来会成为万亿美元的公司,这让我印象很深刻。公司的所有人都很兴奋,对设定的目标有非常大的信心。他们的工作使命感非常强,非常专注。

这是Facebook给我印象深刻的一件事。

在 Facebook 的 site-integrity (站点完整性) 组工作了两年。当时 Facebook 有很多的垃圾私信、垃圾信息,就像人人、微博上有各种广告、垃圾链接。有些用户的账号被盗用了,会使用个人页面发送垃圾短信、广告、病毒,还有一些不受欢迎的朋友请求。我会处理所有类似这些涉及到影响用户体验的东西。

Facebook 使用了一个叫做 sigma 的系统来抵制这些垃圾信息。这个系统安装在 2000 多台机器上面,Facebook 用户做的任何事情,都会经过 sigma 系统分析处理,比如评论、链接、朋友请求,都会被这个系统进行判断,是正常行为、滥用行为还是有问题的行为。

当朋友圈更新多到看不完时,来看看Facebook是怎么优化信息流的

利用 Sigma 系统,Facebook 会对垃圾信息进行过滤和清理。

举个例子说,比如发送朋友请求,Facebook 的系统会自动判断一下:如果这个人的朋友请求都被别人拒绝了,他再发送朋友请求是不会被批准的。如果一个人发送的朋友请求十个有九个都被拒绝了,那么他下一次的朋友请求就会被系统拒绝。

当然这个系统还有其他的判断信号。

它是一个机器学习系统,通过你之前发的朋友请求拒绝概率高低来判断你被拒绝的概率有多高。

如果这个比率很高,Facebook 会让你进行手机短信或其他方式认证,来验证是软件还是真人发送的,以此判断你是不是真的要发送朋友请求,比如你发出的朋友请求对象与你没有任何共同好友,那就可能是一个不合理的请求。

基本上,你在 Facebook 上做的任何事情,都会经过这个系统来分析、预测、决定是否允许你发出信息,借此希望会减少生态圈中的骚扰行为。当时 Facebook 每天有上百亿次的信息发生要通过这个系统进行判断。

机器学习是Sigma 系统的核心

Sigma 系统中有些是人为规则也有机器算法,请求通过和拒绝就是一个迅捷数据组(Scrum)。任务通过,则说明这个任务是一个对机器学习来说的正样本,被拒绝则是一个负样本,很像 0 和 1。

比如发送朋友请求如果被接受,y 值是 1,如果被拒绝就是 0。如果是评论和点赞,系统就能寻找 y 值,用户发送的不当信息就会被删除。

而机器学习是整个 Sigma 系统的核心。

另外一个方法是通过一些异常行为的分析、数据挖掘的方法来分析用户的异常行为。

比如一个人发的同样类型评论非常多,所有评论里都有一个相似链接,这就非常有问题。正常操作不会在不同人的主页上留同样的评论,这显然属于异常行为,我们不会允许。

新闻流是Facebook最重要的产品

我工作两年之后选择去了这个组。

“排序” 指的是信息流的顺序。它决定了打开你的 Facebook 朋友圈,你的信息流是个什么样子,信息的位置。每个人产生的内容、新闻会有两三千个,用户只能看到 50-100 个。你需要把两三千个最好地展示出来。有些我们不给用户显示,比如你喜欢游戏,你的朋友不喜欢。

我 2012 年刚去的时候,新闻流排序组只有五六个人,尽管这可能是公司最大的机器学习系统,最核心的产品。每天有十亿多人上线,每个用户花 40 分钟在 Facebook 上,其中一半时间都花在新闻流上。Facebook 大部分收入来自新闻流广告。比如说,移动广告收入占所有广告的 70%,而其中所有的移动的广告都来自新闻流。不管是从用户的停留时间,还是收入来说,新闻流都是最重要的产品。

当朋友圈更新多到看不完时,来看看Facebook是怎么优化信息流的

您可能感兴趣的文章

相关文章