电商搜索引擎的架构设计和性能优化
众所周知,标准的搜索引擎主要分成三个大的部分,第一步是爬虫系统,第二步是数据分析,第三步才是检索结果。因为电商搜索引跟一般的搜索引擎区别很大,所以在架构的设计上...
电商搜索引擎的特点
众所周知,标准的搜索引擎主要分成三个大的部分,第一步是爬虫系统,第二步是数据分析,第三步才是检索结果。
首先,电商的搜索引擎并没有爬虫系统,因为所有的数据都是结构化的,一般都是微软的数据库或者 Oracle 的数据库,所以不用像百度一样用「爬虫」去不断去别的网站找内容,当然,电商其实也有自己的「爬虫」系统,一般都是抓取友商的价格,再对自己进行调整。
第二点,就是电商搜索引擎的过滤功能其实比搜索功能要常用。甚至大于搜索本身。什么是过滤功能?一般我们网站买东西的时候,搜了一个关健词,比如尿不湿,然后所有相关品牌或者其他分类的选择就会呈现在我们面前。对百度而言,搜什么词就是什么词,如果是新闻的话,可能在时间上会有一个过滤的选项。
第三点,电商搜索引擎支持各种维度的排序,包括支持好评、销量、评论、价格等属性的排序。而且对数据的实时性的要求非常高。对一般的搜索引擎,只有非常重要的网站,比如一些重量级的门户网站,百度的收录是非常快的,但是对那些流量很小的网站,可能一个月才会爬一次。电商搜索对数据的实时性要求主要体现在价格和库存两个方面。
电商搜索引擎另一个特点就是不能丢品,比如我们在淘宝、天猫开了个店铺,然后好不容易搞了一次活动,但是却搜不到了,这是无法忍受的。除此之外,电商搜索引擎与推荐系统和广告系统是相互融合的,因为搜素引擎对流量的贡献是最大的,所以大家都希望把广告系统能跟其融合。当然,还有一点非常重要,就是要保证绝对的高可用,而且不能宕机。
电商搜索引擎的架构
因为电商搜索引跟一般的搜索引擎区别很大,所以在架构的设计上也独具特色。
首先,搜索引擎的实现方式有很多种,有谷歌、百度、搜狗这种非常大的公司,也有京东、淘宝、当当这样的电商搜索引擎,很多中小型的电商可能更喜欢用一个开源的搜索引擎。所以总的来说,主要包括以下这几种方式:
第一种是「Lucene+自己封装」,只用来做检索,然后封装,后面所有的 ES,这两个是完整的解决方案,而且包括索引所有的东西,只需要部署好业务逻辑,然后查找结果就可以了。
第二种就是 Solr,这是一个高性能,采用 Java5 开发,基于 Lucene 的全文搜索服务器。同时对其进行了扩展,提供了比 Lucene 更为丰富的查询语言,同时实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面,是一款非常优秀的全文搜索引擎。
第三种是 ElasticSearch,这是一个基于 Lucene 的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于 RESTful web 接口。Elasticsearch 是用 Java 开发的,并作为 Apache 许可条款下的开放源码发布,目前使用的也非常多。
这里提一下,当当的搜索引擎是自己实现的,。现在,新兴的互联网公司大部分都是使用第一种或者第二种,数据量比较大的一般采用第三种。
电商搜索引擎标配模块
接下来我想讲一下,如果我们自己做一个搜索引擎的话需要实现哪些功能(上图是电商搜索引擎的标准模块),其实不止是电商搜索引擎,除了通搜的搜索引擎,其他的搜索引擎也是使用这样的标配。
对检索模块而言,首先是对用户的意图进行分析,根据用户的搜索词来进行纯算法的实现。比如用户的搜索词是「黑包包」,其实用户的本意就是买一个黑色的包,但是这个「包」可以跟别的词组合在一起,甚至在搜索结果中会出现「包子」。所以,这就需要 query 分析系统来做,告诉检索系统,你需要主要在服装鞋帽中的分类去找,而不是生鲜食品类。
设计到技术层面,当当网使用的是 C++。如果构建一个性能好的系统,一些老一点的公司,大家都是在使用 C++ 或者是 C 语言。不止是当当网,其实很多公司都是使用的 C 或者 C++ 实现的搜索引擎。
数据更新模块
第二个模块就是数据更新模块,该模块负责生成索引。而数据中心模块主要做的事情,就是将原始的结构化数据,变成一个可供检索系统使用的搜索数据库。当然,数据更新模块和检索模块是分开还是合并呢?其实从本质上讲,都是一堆代码,完全可以写在一个进程里。当然,也可以分开,通过网络往外输入,各自都有道理。第一种是简单粗暴型的,如果是普通电商,像生鲜电商,数据量不大,实时性、季节性很强,就可以把两个系统用一个进程来完成。但是如果到了百万、千万甚至上亿级别的话,就不可能部在一台机器上了。
-
无相关信息